Diels-Alder Reaction of Chiral Acrylamide and a Convenient Synthesis of Optically Pure Methyl (3R, 4R, 6R)-Bicyclo[2. 2. 1]heptene-4-carboxylate

Keiki KISHIKAWA, Makoto YAMAMOTO, Shigeo KOHMOTO, and Kazutoshi YAMADA*

Department of Industrial Chemistry,
Chiba University, Chiba 260

Asymmetric Diels-Alder reaction of the chiral acrylamide $\underline{1}$ proceeds highly diastereoselectively and methanolysis of the adduct $\underline{2}$ gives the optically pure (3R, 4R, 6R)-bicyclo[2. 2. 1]-heptene-4-carboxylate.

In recent studies of asymmetric Diels-Alder reactions 1) some highly enantioselective reactions have been reported. However to isolate a pure enantiomer is often problematic. In our investigation of the asymmetric Diels-Alder reaction of acrylamide $\underline{1}$, we have established a very convenient method to synthesize optically pure (100% ee) methyl (3R, 4R, 6R)-bicyclo[2. 2. 1] heptene-4-carboxylate ($\underline{4}$) in an excellent yield. The advantages of our method over others are the commercial availability of the chiral sources (both (R)- and (S)-1-phenylethylamine), a simple separation of the primary diastereomeric cycloadducts $\underline{2}$ and $\underline{3}$ by conventional column chromatography and methanolysis under mild condition to remove the chiral auxiliary.

Scheme 1.

1624 Chemistry Letters, 1988

No.	Lewis Acid	Temp/°C	Time/h	Yield/% ^{a)}	endo/exo ^{b)}	<u>2/3</u> b)
1	no cat.	100	3	71	77:23	52:48
2	SnCl ₄	-78	1	87	97 : 3	64:36
3	Et ₂ AIC1	-115	1	60	97: 3	68:32
4	TiCl ₄	-78	1	85	98: 2	81:19
5	TiCl ₄	-115	1	93	98: 2	74:26

Table 1. Diels-Alder Reaction of the Chiral Acrylamide \underline{l} with Cyclopentadiene

a) Combined yields of all four Diels-Alder adducts. b) The ratios were determined by HPLC (Merck Lichrosorb Si 60; hexane:ethyl acetate=4:l) and $^{\rm l}$ H-NMR (270 MHz) analysis. $^{\rm 2}$

The acrylamide $\underline{1}$ was prepared from acrylic acid and N, N'-di-((S)-l-phenylethyl)urea. The Diels-Alder reaction of $\underline{1}$ (1 mmol) with cyclopentadiene (1.5 mmol) was performed in the presence of a Lewis acid (1.5 mmol) at $100\,^{\circ}\mathrm{C}$ (in toluene), at $-78\,^{\circ}\mathrm{C}$ (in $\mathrm{CH_2Cl_2}$) or at $-115\,^{\circ}\mathrm{C}$ (in EtCl). Without catalyst the endo/exo ratio was 77:23. However in the presence of Lewis acid the endo-selectivity was significantly improved (over 97%). Especially TiCl₄ promoted the reaction with high stereoselectivity.

The major bicyclic acylurea $\underline{2}$ was purified by column chromatography (silica gel, hexane-ethyl acetate) and treated with NaOMe (10 equiv.)/MeOH (0°C, 8 h) to give the optically pure methyl ester $\underline{4}^{4}$) (94%) and the chiral urea $\underline{5}$ (83%).

The observed high selectivity can be explained by considering the complex 1' depicted in Scheme 1. The π - π attractive interactions of the pendant vinyl group with the benzene ring must occur at the re-face of the olefine moiety due to the H-H repulsions between the olefin and the methyl group of the phenethyl moiety. Accordingly, the Diels-Alder reaction should occur stereoselectively at the siface giving the bicyclic acylurea $\frac{4}{7}$ as a major product.

These results indicate that it is also possible to obtain the optically pure (3S, 4S, 6S)-isomer from (R)-1-phenylethylamine. Further, both the chiral auxiliaries can be efficiently recycled.

We thank the fund of Mitsui Petrochemical Industries, Ltd., for a fellowship (K. K.). Thanks are also given to Miss Kayoko Kogure for assistance in this work.

References

- D. A. Eyans, K. T. Chapman, and J. Bisaha, J. Am. Chem. Soc., <u>106</u>, 4261 (1984);
 W. Oppolzer, C. Chapius, and G. Bernardinelli, Helv. Chim. Acta, <u>67</u>, 1397 (1984).
- 2) The ratios (2/3) were determined based on the following signals. 1 H-NMR (§, J in Hz, CDCl₃): $\underline{2}$: 6.08(dd, J=5.6, 2.8, 1H, H-C(2)), 3.18(s, 1H, H-C(3)), 3.31 (qi, J=7.0, 1H, H-C(4)), $\underline{3}$: 5.90(dd, J=5.8, 2.8, 1H, H-C(2)), 2.78(s, 1H, H-C(3)), 3.37(qi, J=4.2, 1H, H-C(4)).
- 3) K. Yamada, K. Kishikawa, S. Kohmoto, and M. Yamamoto, Chem. Lett., 1988, 351.
- 4) The value observed was $[\alpha]_D^{22}$ +144.6° (EtOH). (lit. $[\alpha]_D$ +141° (95% EtOH): J. A. Berson and D. A. Ben-Efraim, J. Am. Chem. Soc., <u>81</u>, 4084 (1959).

(Received June 27, 1988)